Hukum Pascal berbunyi: "Jika tekanan luaran diterapkan pada sistem tertutup, tekanan pada setiap titik dalam cairan akan meningkat sebanding dengan tekanan luar yang diterapkan."
Pernahkah anda melihat ketika bengkel menukar tayar? Sekiranya demikian, pasti anda akan melihat bahawa kereta atau bahkan trak diangkat terlebih dahulu menggunakan alat kecil yang disebut jack.
Sudah tentu timbul persoalan bagaimana jek dapat mengangkat kereta yang beratnya bahkan beribu-ribu kali dari bicu.
Jawapan untuk soalan ini dijelaskan oleh undang-undang yang disebut Pascal's Law. Untuk lebih jelasnya, mari kita perhatikan lebih lanjut mengenai Undang-Undang Pascal beserta contoh masalahnya.
Memahami Hukum Pascal
Pada abad ke-16, seorang ahli falsafah dan saintis bernama Blaise Pascal mencipta undang-undang yang disebut Pascal's Law. Undang-undang ini berbunyi:
"Jika tekanan luaran diterapkan pada sistem tertutup, tekanan pada setiap titik dalam cairan akan meningkat sebanding dengan tekanan yang diterapkan secara luaran."
Ilmu asas hukum ini adalah tekanan, di mana tekanan yang diberikan pada bendalir dengan sistem tertutup akan sama dengan tekanan yang keluar dari sistem.
Terima kasih kepadanya, inovasi mula muncul terutama untuk menyelesaikan masalah mengangkat beban berat. Contohnya ialah jek, pam dan sistem hidraulik dalam pengereman.
Formula
Sebelum pergi ke persamaan atau formula Hukum Pascal, kita perlu mempelajari sains asas, iaitu tekanan. Definisi umum tekanan adalah kesan atau daya yang bertindak pada permukaan. Formula umum untuk persamaan adalah:
P = F / A
Di mana:
P adalah tekanan (Pa)
F ialah daya (N)
A adalah luas permukaan yang berkesan (m2)
Persamaan matematik Hukum Pascal sangat mudah di mana:
Baca juga: Struktur, fungsi dan gambar bakteria [LENGKAP]Masukkan = Keluar
Dengan gambar di atas, persamaan Hukum Pascal dapat ditulis sebagai:
P1 = P2
F1 / A1 = F2 / A2
Dengan:
P1: tekanan masuk (Pa)
P2: tekanan keluar (Pa)
F1: daya yang dikenakan (N)
F2: daya yang dihasilkan (N)
A1: luas daya yang dikenakan (m2)
A2: luas yang dihasilkan (m2)
Selain itu, ada istilah lain yang digunakan dalam menerapkan Hukum Pascal yang disebut sebagai keuntungan mekanik. Secara umum, kelebihan mekanikal adalah nisbah antara daya yang dapat dihasilkan oleh sistem dan daya yang mesti diterapkan. Secara matematik, kelebihan mekanikal dapat ditulis:
kelebihan mekanikal = F2 / F1
Seperti dalam contoh lif kereta hidraulik, bendalir dalam sistem akan mempunyai isipadu yang sama
Oleh itu, persamaan untuk Pascal's Law juga dapat ditulis sebagai nisbah jumlah masuk dan keluar yang:
V1 = V2
atau boleh ditulis sebagai
A1.h1 = A2.h2
Di mana:
V1 = isipadu ditolak masuk
V2 = isipadu yang keluar
A1 = kawasan bahagian kemasukan
A2 = kawasan keratan keluar
h1 = kedalaman bahagian masuk
h2 = ketinggian bahagian keluar
Contoh masalah
Berikut adalah beberapa contoh dan perbincangan masalah dengan penerapan Undang-Undang Pascal sehingga anda dapat memahami dengan lebih mudah.
Contoh 1
Tuas hidraulik digunakan untuk mengangkat muatan 1 tan. Sekiranya nisbah antara kawasan penampang adalah 1: 200, berapakah daya minimum yang mesti dikenakan pada tuas hidraulik?
Jawapan:
A1 / A2 = 1: 200
m = 1000 kg, kemudian W = m. g = 1000. 10 = 10000 N
F1 / A1 = F2 / A2
F1 / F2 = A1 / A2
F1 / 10000 = 1/200
F1 = 50N
Jadi daya yang harus dilakukan oleh sistem adalah 50N
Contoh 2
Kelebihan mekanikal tuas hidraulik mempunyai nilai 20. Sekiranya seseorang ingin mengangkat kereta seberat 879kg, kekuatan apa yang harus dilakukan oleh sistem?
Jawapan:
m = 879kg, maka W = mg = 879. 10 = 8790 N
keuntungan mekanikal = 20
F2 / F1 = 20
8790 / F1 = 20
F1 = 439.5 N
jadi daya yang diberikan pada leverage adalah 439.5 N
Baca juga: 1 Tahun Berapa Minggu? (Tahun hingga Minggu) Inilah JawapannyaContoh 3
Tuas hidraulik mempunyai diameter piston masuk 14 cm dan diameter saluran keluar 42 cm. Sekiranya omboh turun ke kedalaman 10cm, berapakah ketinggian omboh yang diangkat keluar?
Jawapan:
Piston mempunyai permukaan bulat sehingga luasnya
A1 = π. r12 = 22/7. (14/2) 2 = 154 cm2
A2 = π. r22 = 22/7. (42/2) 2 = 1386 cm2
h1 = 10 cm
kemudian
A1. h1 = A2. h2
154. 10 = 1386. h2
h2 = 1540/1386
h2 = 1.11 cm
Jadi omboh yang diangkat keluar setinggi 1.11 cm
Contoh 4
Pemampat dengan selang yang dipasang pada paip mempunyai diameter 14mm. Sekiranya penyembur dengan muncung 0.42mm dipasang di hujung selang dan ketika pemampat dihidupkan, tekanan diukur pada 10 bar. Tentukan jumlah daya ekzos udara yang keluar dari muncung jika tekanan pemampat tidak menurun.
Jawapan :
Selang dan lubang mempunyai luas penampang bulat
Maka luas permukaan lubang adalah
A2 = π. r22 = 22/7. (1,4 / 2) 2 = 1.54 mm2
"Ingatlah bahawa Hukum Pascal menjelaskan bahwa tekanan masuk sama dengan tekanan keluar."
Sehingga angkatan udara yang keluar adalah:
P = F / A
F = P. A
F = 10 bar. 1.54 mm2
ubah bar unit kepada pascal dan mm2 menjadi m2
kemudian
F = 106 Pa. 1.54 x 10-6 m2
F = 1.54 N
Jadi daya angin yang keluar ialah 1.54 N
Demikianlah perbincangan mengenai Pascal's Law, semoga dapat bermanfaat bagi anda.